Contribution of bursty bulk flows to the global dipolarization of the magnetotail during an isolated substorm

- High-resolution global simulations reveal for the first time that a global substorm dipolarization of the magnetosphere is made up of a large number of small ones, providing a dominant mechanism of magnetic flux transport in the nightside magnetosphere.

- This suggests how the fundamental mode of magnetospheric convection, the so-called "Dungey cycle" posited in 1961, operates in reality.

- The work is enabled by highly accurate numerical methods implemented and run on Cheyenne – one of the largest supercomputers in the world.

- Simulations are consistent with in situ measurements by NASA MMS and NOAA GOES spacecraft.

Dungey cycle at work: Global substorm dipolarization of the nightside magnetosphere is an accumulation of localized geomagnetic field enhancements carried by bursty plasma flows.