

1. Pristine O_2 reservoir at depth incorporated into the comet before nucleus formation. When H_2O sublimation is low, the original source of O_2 and its link with CO and CO_2 instead of H_2O becomes visible.

Dual storage and release of molecular oxygen in comet 67P/Churyumov-Gerasimenko

O₂ was incorporated into the comet's nucleus in a solid and distinct phase before agglomeration *in much lower abundances* than early *Rosetta* measurements imply. • The remarkably high O₂ and persistently strong O₂-H₂O

explain.

tperihelion Equinox

Before Preperihelion Equinox

• We found a hitherto unrecognized change in the correlations of O_2 with H_2O , CO, and CO_2 that rules out an O_2 -H₂O link by formation.

correlation measured in the coma was assumed to

reflect the overall nucleus abundance and a shared

chemical origin of O_2 with H_2O , which is difficult to

Instead, O_2 in the coma comes from 2 distinct nucleus reservoirs that have very different origins. There is not that much O_2 in the comet after all.

Luspay-Kuti et al. (2022) Nature Astronomy

2. Secondary O_2 reservoir that forms by the accumulation of re-trapped O_2 from depth in the shallower porous H_2O ice. This O_2 is only released with H_2O sublimation and does not reflect the overall original O_2 content. It is the dominant O_2 source, which explains the high O_2/H_2O measurements.